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These lectures will be different from most mathematical talks,
because much of what I am going to say is disputatious. I could avoid
this aspect of the subject, or anyway minimize it, by confining my

#
remarks to the technical aspects of constructivism. This is precisely
what I do not want to do, and not from any desire to promote controversy,
either. Since I shall be presenting my own version of constructivism,
although there-are many others, I hope that some of you will take issue
with me as we go along. Some of you may even wish to defend classical
mathematics! It is time to bring the fundamental issues of mathematics,
that have been hid@en from public view so long, out into the open. These
issues are not compleﬁ, and suited to study by experts only, as the eiperts
would have us believe. As an instance of a simple but fundamental issue,
how can thére be numbers that are not compﬁtable by any known method? Does
that not contradict the very essence of the concepf oﬁ number, which is
con;erned with computation?

Such questioﬁs, striking at our lifelong conception of mathematics,
may make these lectures seem excessively negativistic. It all depends on
what you think of negativism, and how you use it.

To take an ekample, most of you héve heard of non-standard analysis.

A number of people who at various times have approached me in order to
express an interest in constructivism have gone on to spoil it by ekpressing
.an interest in non-standard analysis as well. The two.are at opposite poles.

Constructivism is an attempt to deepen the meaning of mathematics; non-
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standard analysis, an attempt to dilute it fﬁ}ther.

'Mathematicians do not like to be told that their theorems are
deficient in meanlng However there is the consolation that mathematics
stands well in a relative sense. .Anyone who has been around a university
_for a few years must have observed that some disciplines regard any non-
superflclal concern with meaning as bad form. The object is to do research
that conforms to the rules of the game, any meaningful results being
incidental. The question before us here is, to what extend has mathematics
fallen into this trap? The unavoidable consideration of this question
gives constructive mathematics its negatiyistic cast. The critique Qf
classical mathematgcs (meaning mathematics as currently practiced by
almost all pure mathemaficians) that I shall present here was given its
present incisive form by Brouwer. Once Brouwer;s critique is out of the 3
way, we shall be able to turn our attention to posxtlve developments,
whlch by now constitute 99% of the subJect. In 1ntroductory lectures

such as these, the philosophical foundations must be.laid;vand éritical
comments come to the fore. S |
The process that has diluted the meaning of mathematics can be
observed in a broader contéﬁt. The contekt can be as broad as life
itself. Whether in mathematics, in‘eéonomics; in sociology, or in social
intercourse, to givé a few instances, the attainment of meaningful
eipression is éitremely difficult. It seems to me that ouf problems arise
from our attempts to insulate ourselve§ frdﬁ these difficulties. This
insulation is échieved by a codification of correct procedure, by a
~methodology. ~When methodology is elevated to dogma,_as it always 1is to

. some extent, attention is diverted from meaning and shifted to more



formal ground.

Mathematics itself affords a striking instance of the transition
from methodology to dogma. The axicmatic method, having been dormant
for centuries, has become extremely active in recent times. It accounts
for much that is powerful and profound, and I have no quarrel with its
use in mathematics preper. I do take ekception,io it; use in mathematical
philosophy. The ekperts routinely equate the entire panorama of mathe-
matics with the productions of this or that formal system. Philosophising
about mathema;ics consists of manipujating formal systems! Although the
lack of adequate attention to ﬁeaning in classical mathematics preceded
the rise of formalgsm, dogmatic philosophising has greatly impeded the
developrent of constructivism. These remarks do not mean that formal
systems have no value. I am saying that they have been promoted as
something they are not, as powerful tocls for investigating the nature
of mathematics and even as. the font of meaning.

Since I have led into the problem of meaning, let us be more precise
about that term. Mathematics has meaning on at least four levels:

" (a) as a game-an intellectual challenge-like chess

(b) as an art form-a beautiful structure;like music

(¢) as a tool-for understanding and manipulating nature

(d) as a description-of certain abstract entities..

Some prominent mathematicians are quick to say that for them it is
just a game. A much more natural and‘compelling game than chess, needless
to.say. ~Let us call such people formalists. The typical formalist is an

~eider statesman, who no longer tries to make sense of it all. It is

disturbing that there are more and more precocious formalists, who embrace



the mathematics-as-a-game philosophy relatively early in their careers.

Of course, it is a game. It is also an art form. However, many of
us think that its essence lies deeper. Here I should distinguish pure
mathematics from applied, because their essences are distinct. Hermann
Weyl once defined mathematics as "a branch of the theoretical construction
of the one real world." This is an elegant and‘delightful definition, if
one is speaking of applied mathematics. To get a definition of pure mathe-
matics, I would turn Weyl's definition around, and define pure- mathematics
to be ''that component of ouf precise intellectual activity which in.
pfinéiple is independent of the one real world." Be that as it may,jthe
non-formalists will agree that the essence of applied mathematics derives
from its utility, and th; essence of pure mathematics from its descriptive
content.: For the present, let us put applied mathematics aside, and
philosophize about fure mathematics. If we accept that its essence derives
from its descfiptive content, then what is being described? Alas, there is
disagreement. The classicist wishes to describe God's mathematic¢s; the
constructivist, to describe the mathematics of finite beings, man's
mathematics for short. (You notice I am not being quite fair. I don't
see why I shouldAEe fair. Nobody else is.) The claésical point of view
is also called Platonism, or idealism, and thé constructive, realism.

To make the distinction clear, let us conéider three theorems.
1. ~ Every positive integer is the sum of 4 squares.:

1I. Every bounded monotone sequence of real numbers converges.

III. There exist irraticnal numbers x and y sucﬁ that x”

is rational.



Theorem I is a beautiful ekample of man's mathematics. A finite
being, given enough time, can represent an arbitrary positive integer as
the sum of four squares.

Theorem II is a beautiful éXample of God's mathematics. There is
no way a finite being.can compute the limit of an arbitrary .bounded
monetone éequence. I will discuss thisimatter iﬁ moré detail later. For
the moment, a picture will make the point. The terms of the sequence are

represented by vertical marks marching to the right, but remaining to the

left of the bound B.
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The classical'intuition is that the sequence gets cramped, because there
is only a finite amount of space left to it to the left of B, but T
infinitely many terms. Therefore the sequence has to pile up somewhere.

That somewhere is its limit L.

belil ob koliatte l l

L B
I grant that this is preciéely the behavior of some séquences. I call
thoée sequences stupid.' Let me tell you what a smart sequence will do.
It will pretend that it is stupid, piling up at a limit Lf. Then when
you have been convinced that that is actually what it is dbing, it will

jump to the right of Lg!
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Of course, the smart sequence can only outwit you and me. It cannot
outwit God. Thus Theorem II is false constructively bht true classically.'
Let me show you an amusing proof of Theorem III. Either /7J5 is
rational or it is irrational. If /5/5 is rational, Theorem III is
proved. If /5/5 is irrational, take x = /5/5' and y = ¥2. Then X
and y are irrational and ¥ = VoI ;‘2 is rationall
Of course, God will be satisfied with this proof. He can look at
/5/5 and tell you right away whether it is rational or not. We are not
able to do this. Therefore, unless we append to this proof a method by
which a finite being can decide whether /7/? is rational, we do no;
have a constructive proof. |
The fact that our p;oof of Theorem III was not constructive does not
mean that Theorem III itself is not constructive. In fact, it is not 4
hard to give Theorem III a constructive proof. Perhaps I shall do so
later, after we have given a comstructive proof of Cantor's result on
the uncountability of the real numbers. For now, I only wish to‘make the
point that it is only the given proof of Theorem III that is unconstructive,
in contrast to Theorem II, which is essentially unconstructive, as the above
considerations indicate. In classical mathematics, one con§iders the'
meaning of a theorem to be independent of its proof. As Theorem III
indicates, to the constructivist the meaning of a theorem depends very
much on its préof!
How do you know whether a proof is constructive? If you don't like
the man or God point of view, look at it this way. Try to write a
computer program. If you can program a computer to do'it, it should be

constructive. Notice I said write the program. Don't necessarily run



it on the computer and wait around for the result.
The requirement of computability can be expressed more precisely as

follows.
Fundamental Constructivist Thesis

Every (representation of) an integer can be converted in principle

to decimal form by a finite, purely routine, process.
: : .

As the statement indicates, we work with representations of integers,
not integers. What an integer is, I don't know, and I don't care. For
simplicity, in the sequel I shall not bother to distinguish an integer

from its representations.

Let us examine three classically defined (representations of)

integers, and see how they measure up to our thesis. Let n, be 0 if

1

every even integer between 4 and 104 is the sum of two primes; and

1 otherwise. Let n, be 0 if every even integer between 4 and

100

10 is the sum of two primes, and 1 otherwise. Let n, be 0 if

3
every even integer 24 is the sum of two primes, and 1 otherwise.
Although I have not personally loocked intc the matter, or know of

anyone who has, it is not beyond my powers to compute n Without even

1
doing so, I am willing to bet the result will be 1.

In principle, the computation of n, (i.e., its conversion to
decimal form) is equally simple. A novice could write the computer
program. You see why I was careful to insert the phrase "in principle"
into the constructivist thesis!.

There is no known finite method for converting n, to decimal form.

in decimal

As some of you may have noticed, the representation of n.
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form is equivalent to the solution of Goldbach's famoﬁs conjecture: ng
is 0 4if the conjecture is true and 1 if it is falée. Until we have
a finite method that will lead to a proof or disproof of Goldbach's
conjecture, we are (constructively speaking) not entitled to accept 1.
as an integer. If somebody finds such a method, and appends it to the
description of 53 given above, the resulting total'ﬁescription will be
the definition of an integer. |

There isn't really much more to tell you about integers. Two of
them are equal, of course, if their décimal representations are equal in
the usual sense. Their ordering and their arithmetic are also defined
in terms of their éecimal representations.

Let's mové on to the rational numbers. The constructivist thesis
is easily eitended: Every (representation.of) a rtational number can be
converted in principle to.the fofm 53 wherg p and q are decimal
integers with q # 0, by a finite, purely routine, pfocess. Equality,
order, énd arithmetic 6f rational numbers aré defined in the usual way,

working with their decimal representations 2

Let us mo&e on, and ask what is meant constructively by a function
£:Z > Z (where Z 1is the set of intégers). We impfo&e the classical
treatment right away-instead of talking‘about ordered pdirs, we talk
about rules. Qur definition simply takes a function £:Z~> Z to be a
rule that associates to each (constructively defined) integer n 2
(constructively defined) integer £(n), equal values being associated
to equal arguments. For a given argument n, the requirement that £(n)
“be constructively defined means that its decimal form.can be computed by

a finite, purely routine process. That's all there is to it. Functions



£:7+Q, £:Q+ Q, £:7° > Q are defined similérly. (Here Q 1is thg set
of rational numbers and Z the set of positive integers.) A function
with domain 2% is called a sequence, as usual.

Now that we know what a sequence of rational numbers is, it is easy
to define a real number. A real number is a Cauchy sequence of rational
numbers! Again, I have improved on the classical tre?tment, by nof
mentioning equivalence classes. I will never mention equivalence classes.
To be sure we ccmpletely understand this definition, let us expand it a
bit. Real numbers are not pre—eiistent entities, waiting to be discovered.
They must be eonstructed. Thus it is better to describe how to construct
a real number, than to say what it is. To construct a real number, one
must

(a) construct a sequence '{xn} of rational numbers

(b) conmstruct a sequence '{Nn} of integers

(c) prove that for each positive integer n we have

' s & ” .
lxi-xj[ < = whenever i 2N and j2N.

0f course, the proof (c) must be constructive, as well as the constructions
(2) 'and (b). This raises the question, of just what is a constructive
proof, in particular a constructive proof of a statement sﬁch as (¢). 1

am not prepared to say. My feeling is, ény arguhent that I find completely
convincing is an acceptable proof.  Any argument that is not completely
convincing, on the other hand, leaves something to be desired as a proof.
The question often comes up, whether a constructivist should accept, for
instance, a construction of a réal_number in which the sequences (a) and
(b) are constructively defined but the proof (;) is classical and not

_ constructive, My feeling is, I would want to see the proof before deciding
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whether to accept it. I do not believe that I would find a proof that
relied on the principlé of the excluded middle, for example, completely
convincing, but perhaps one should keep an open mind. At the moment the
question is academic anyway, because nonconstructive proofs of the type
in question have not arisen.

Two real numbers -{an} and ‘{bn} (the correspdpding convergence
parameters (b) and proofs (c) are assumed without explicit mention) are
said to be equal if for each positive integer k there exists a positive
integer N, such that la -b | =< %- whenever n 2 N,. It can be shown
that this notion of equality is an equivalence relation. Addition and
multiplication of real numbers are also defined, just like they are
defined classically. Thé order relation, on the other hand, is more
interesting. If a ='{an} and b ='{bn} are real numbers, we define *
a < b to mean that there exist positive integers M and N sucﬁ that
g sb - %- whenever n 2 N. Then it is easily showﬁ that a<b and
b<c imply a < c, that a < b implies a-c < b-c; and so forth.

Some care must be exercised in defining the relation . <. We could define

a £b to mean that either a <b or a=>b. An alternate definition
would be to define it to mean that b < a 1is contradictory. We shall

not use either of these, although our definition turns out to be equivalent
to the latter.

‘Definitioﬁ. a < b means that for each positive integer M there

exists a positive integer N such that bn 2a_ - whenever n 2 N.

n

2|

~ To make the choice of this definition plausible, I shall construct

“a certain real number H, called the Royden number.
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-] . A
H= ] a2
n=1
where o = 0 in case every even integer between 4 and n is the sum

of two primes, and @ = 1 otherwise. (More precisely, H is given by

: y -k
the Cauchy sequence {an}, with a = L akz

. —
of convergence parameters, where Nn = n.) Clearly we wish to have

e~

, and the sequence '{Nn}

H = 0. It certainly is according to the definition we have chosen. (The
real number 0 of course is the Cauchy sequence of rational numbers all
oé whose terms are 0.) On the other hand, we would not be entitled to
éssert that H > 0 if we had defined H 2 0 to mean that either H > 0
or H=20, bécause the assertion '"H > 0 or H = 0" means that we have
a finite, purely routine method for deciding which; in this case, a
finite, purely routine method for proving or disproving Goldbach's
conjecture!

Most of the usual theorems about < and < remain true constructively,
with the ekception of trichotomy. Not only does the usual form "a < b
or a=b or a>bh" fail, but such weaker forms as "a<b or azb",
or éven “"a <b or az=b" fail as well. For eiample, we are not
entitled to assert "0 <H or 0 =H or 0> ﬁ" for the Royden number

H. If we cohsider the closely related number H!'

@ s
) o, (-2)7?, we are
n
- n=1
not even entitled to assert that "H' > 0 or H' < 0".
Since trichotomy is so fundamental, we might expect constructive
mathematics to he hopelessly enfeebled because of its failure. This

situation is saved, because trichtomy does have a constructive version,

which of course is considerably weaker than the classical.
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Theorem. For arbitrary real numbers a, b, and ¢, with a < b, either
c>a or c<b.

Proof. Choose integers M and NO such that a, s bn - %— whenever-
n 2 Ny. Choose integers N, Ni, and N_ such that [an-aml's (GM)-l
w@gqeyé? n,n > Naf }bn-bm] < (6M)'1 whenever n,m 2 Nbf lcn'éml 2 (6M)'1
vhenever n,m 2 Nc' Sét N = ﬁa%{&O’&a’Nb’ﬁc}; Sinﬁe 3y bN’ and cy are
all rational numbers, either ey < %{aN+bN) or ¢y 2 %{aN+bN)n Consider
first the case cy 2 %{8N+bN)' Since ay ; by - M-l, it follows that

-1
aN\s ey T (2M) °. For each n =2 N we therefore have
-1 -1 -i
a, < ay + (6M) ~ < oy - M) + {6M)

B &, ¥ (6ﬁ)'1 @t @t = c, - GO

Therefore a < c¢c. In the other case, ey < %{aN+bN), it follows similarly
that a > b. This completes the proof of the theorem.

Do not be decsived by the use of the word "choose'" in the above
proof, which is simply a carry-over from classical usage. No choice is
involved, because M and NO’ for instance, are fikéd positive integers,
defined explicitly by the proof of the inequality a < b. Of course we
could decide to substitute other values for the original values of M
and No, if we desired, so some choice is possigle sﬁould we wish to
exercise it. If we do not explicitly state what choice we wish to make,
it will be assumed that the values of M and No given by the proof
of a<b are chosen.

It is constructively correét to state that the real numbers are a

'complete ordered field, if in the definition of order we merely replace
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the usual version of trichotomy with the form just proved!
Another important property of the order relations is the following.

Theorem. Let a and b be real numbers. Then a =2 b if and only if

a <b is contradictory.
Proof. Assume that a 2b and a < b. Then there exist positive

integers M and N such that a, < bﬁ -:—i whenever" n 2 N. Also,

whenever

1
- F{- and

there exists a positive integer Nl

n2N. Ifwetake n = maX{N,Nl} it follows that a_ <

: 1
such 1_:hat a, 2 bn i)
b
n
a = bn - tvl—i This contradiction shows that if a =2 b, then a <b is

n

contradictory.

Assume conversely that a < b 1is contradictory. We wish to prove

that a > b. Let M be any positive integer. Choose an integer Na

1
such that !an-am] <3 whenever n 2 Na and m 2 Na' Choose Nb

similarly. Write N = mak{Na,Nb}. Consider any integer m 2 N. Assume

that 2, < bm - % Then for each n 2 N we have
4 1 1 1- 1 1 | 1
s W T htTW RN W~ "W

It follows that a < b. Since a < b is contradictory, a < bm - l%l'

is contradictory. Since this is an inequality between rational numbers,
2 2 bm - Ml— Since m is an arbiti‘ary integer 2 N, it follows that
a zb, as was to be proved.

Two real numbers x and y are said to be unequal, x # y, in case

X<y or x>y. This is easily seen to mean that there exist positive

1

integers M and N with !xn-yn] x i

for all nn =2 N.

Let r be any rational number. Then the sequenée '{r,r,r,---} is
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Cauchy. Together with the sequence '{Nk} of‘convergence parameters, with
Nk = 1 for all k, it defines a real number. This real number is also
denoted by r. More generally, any real number that is equal to such a
Teal number is also called rational. As with all constructive concepts,
_Wwe would like irrationality to be a positive concept. We‘therefore define
a real number x to be irrational if x # r for all;rational numbers T
(rather than defining x to be irrational if it ié contradictory that x
is rational).
The Royden number H, which is constructively a well-defined real

number, is classically rational, because if the Goldbach conjecture is

1, where

true then H = 0, aﬁd if the conjecture is false then H = g~ T
n is the first even intéger for which it fails. We are not entitledAto
assert constructively that H is rational: if it is rational, then
either H=0 or H # 0, meaning that either Goldbach's conjectufe is
true or else it is false; and we are not entitled to éssert this con-
structively, until we have a method for deciding which. .We are not
entitled to assert H is irrational either, because if H is irrational,
then H # 0, therefore Goldbach's conjecture is false, therefqre H is
the rational number 2-n+l, a contradiction! Thus H cannot be asserted
to be rational, although its irrationality is contradictory.

Later we shall prove the existence of many irrational numbers, by
proving the unéountability of the real numbers, as a corollary of the
‘Baire category theorem. For the present, lgt us merely remark that 2
is’irrational. Of course, /2 can be defined‘by constructing successive

“decimal approximations. It is therefore constructively well-defined.

The classical proof of the irraticnality of +2 shows that if ﬁ' is
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2 2

any rational number then Ei-# 2. Since both' Eﬁ' and 2 can be written
: q - q
with denominator qz, it follows that
, ) :
B vzl B w2l = By 2] 2 iy
q q q2 q

Since clearly %-# Y2 in case §-< 0 or §-> 2, to show that E-#A/T

we may assume 0 < ﬁ-s 2. Then

[y

P_/al s RBevatl ol s qaegpt oL L,
I i R L b S

£
e

Therefore V2 # %n Thus +2 is (constructively) irrational.

The failure of;the usual form of trichotomy means that we must bg
careful in defining absolute values and maxima and minima of real numbers.
For example, if x =’{kn} is a real number, with sequence (N } of
convergence parameters, then |[x| is defined to be the Cauchy sequence
{]xn!} of rational numbers (with sequence '{Nn}' of convergence para-
meters). Similarly, min{x,y} is defined to be the Cauchy sequence

e

{mln{xn,yn}}n=1, and max{x,y} to be {max{x n=1

n’Yn
This definition of min, in particular, has an amusing consequence.
Consider the equation _
x2 --xH' = 0.
Cleariy 0 énd the modified Royden number H' are solutions. Are they
the only solutions? It depends on what we mean by “only". Clearly
mih{d,H'} is a solution, and we are unable to identify it with either

0 or H'. Thus it is a third solution! The reader might like to amuse

himself looking for others. This discussion incidentally makes the point
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that if the product of two real numbers is 0‘ we are not entitled to
' conclude that one of them is 0. (For example, x(x-H') = 0 does not
imply that x =0 or x - H' = 0: set x = min{0,H'}.)

A function from the set of real numbers R to R is simply a
rule that associates to each real number i another real numﬁer f(x),
such that f(k) = f(y) whenever x = y; Everything to be interpreted
constructively, of course.

"If a and b are real numbers with a < b, a function f£:[a,b] + IR
is*defined similarly. It is called continuous if for each positive
integer n there is a positive integer . Nn su;h that If(i)-f(yll s n-l

whenever |x-y| < N;-l

. This concept is classically called uniform
continuity, of course. it is equivalent classically to pointwise
continuity. Constructively, however, there seems to be no way to deduce
uniform continuity from pointwise continuity. Of course, uniform
continuity is the basic concept. One might almost say that the only
reason in classical mathematics for proving continuity of a function
f:[a,b] * R is to use the continuity to prove uniform confinuity. Even
this reason is specious, since all the usual proofs of continuity actually
provide uniform continuity with very little additional work. Since the
concept of pointwise continuity by itself is of little use, and since we
are not able to use it to prove uniform continuity, the obvious thing to
do is to define-continuity to mean uniform continuity, as we have done
above: Thus we have followed the spirit of the classical definition,
rather than its letter, in constructivizing the classical notion of a
‘continuous functionﬂ f:[a,b] =" R. Many people have told me that they
thought it would have been better if in this and similar instances I had

stuck to the letter of the classical terminology, even at the cost of

%
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doing violence to its spirit.

A continuous function f:R +R is of course defined to be one whose
restriction to every proper clesed subinterval [a,b] is (uniformly)
continuous. By the word "propef" we mean -~= < a < b < 4=,

Working with the concepts already developed, we would have little
trouble constructivizing the standard results of calculus. Rather than
indicate the entire development, I shall consider one or two ekamples in
detail, to get a feeling for the problems involved.

One classical theorem that fails, is that a continuous function on
a closed interval [a,b] attains its maximum., Let H' be the modified
Royden number. For”™ 0 < x<1 we set

| £(x) = H'x.
Classically, £ attains its maximum either at 0 or at 1, depending on
whether H' < 0 or H' 2 0. Constructively, no soap. The most we can
say is that lL.u.b. f and g.l.b. £ eiist.

To be more precise about this latter statement, consider any set
S of real numbers.. By l.u.b. S, we mean a real number u such that
(a).i's u for all i in S, and (b) for each positive integer n, there
exists X in S§ with *n 2u - %u Notice the switch from the classical
definition! We have preserved the spirit but violated the letter. If
instead of (b) we had substituted the usual condition (b') y 2 u for
each upper boun& y of S, then we would not have been able to prove
(b) constructively. Since it is (b), and not (b'), that packs the punch,
we require that (b) be satisfied. Going back to our function, l.u.b. f
'is'defined as usual to be l.ulb}{f(*):k € [a,b]}. We pass by the simple

proof that l.u.b. f exists for all (uniformly!) continuous f£.
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‘

Another theorem that fails.constructiveli is the intermediate value

theorem. To see this, let H' be the modified Royden.number. For
-1 < x £ 0, we define f(i) =x + (1+x)H'. For O s X < 1, we define

£(x) = H'. For 1 <x s 2, we define £(x) = (2-x)H' + x-1. We must be
careful, because f is not defined on all of the interval [-1,2]. It
is only defined on D = [-1,0] u [0,1] v [1,2]. It is not yet defined
for the modified Royden number H', for instance. However, since f is
uniformly continuous on D, the usual methods, which are constructively
correct, provide a unique continuous eitention to ([-1,2], which we
continue to denote by f£. Clearly f£(-1) = <1 and £(2) = 1. By the
intermediate value theorem, there eiists io in [-1,2] with f(io) = 0.
By a previous result, eiﬁher io >0 or Xg < 1. In the former case,
H' > 0 1is contradictory, and therefore H' < 0. In the latter case,
H' < 0' is contradictory, and therefore H' > 0. Thus from the in£er-
mediate value theorem we hgve deduced constructively fhat H' <0 or
H' 2 0. It follows that we are not entitled to assert the intermediate
value theorem constructively.

. The follewing weakened version is often useful.

Theorem. Let f:[a,b] IR be continuous, with f(a) < £(b). In addition,
assume that whenever 2y and bo are real numbers wiﬁh a < ag < bd < b,
there ekists a real number x with ag < X £ b0 and f(x) # f(a

(This additional hypothesis can be paraphrased as "f is non-constant on

o)

each proper sub-interval of [a,b]".) Then for each real number c with
£(a) < ¢ < £(b), there exists x in [a,b] with £(x) = c.

Proof. We construct inductively a sequence '{[aﬁ,bn]} of proper
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2.n-1

sub-intervals of [a,b];'such that (a) b = an < (7 “(b-a), and

Cb).f(an) s‘c < f(bn). To begin, set a =8 and b1 = b. It will be
enough to construct the next interval [a b2], since the same process
we use to comstruct [a b2] from [al,bll can be used to construct

[as,bs] from [az,bzl, and so forth. By assumpt1on, there . exists x

Byhiy 1 2 At
>— S X Sza, ¢ b, such that f(x) # f(—— 3 ) Therefore either

with 1

a1+b

f(x) # ¢ or f( 1) # c. In either case, £(y) # ¢ for some y with

y - al's %{bl-al) and b1 -y < %{bl-al). Since f(y) # ¢, either
fly) <c or £(y) > c. In the former case, take 3, =Y and b2 ='b1.
Then b2 -a,= b1 :'Y‘s %{bl-ai), énd f(az) = fly) < £f(c) < f(bi) = f(bz).
In the latter case, take a, = al' and b2 = y. Again, the requiredx'
conditions are satisfied. This complétes'the inductive construction of
’{[an,bn]}. Clearly '{an} is a Cauchy sequence. Since R is complete,
it converges to a limit x. Clearly ‘{bn} ‘also converges to X. Since
f 1is continuous and f(an) < ¢ for all n, we have f(i) < ¢. Similarly,
f(k) 2 c. Thereforé f(x) =

A useful application of this theorem is to a polynomial function. It
vtén_be shown that a-non-constant polynomial function satisfies the
additional hypothesis.v Thus a polynomial function f with f(a) < £(b)
assumes all values c¢ with f(a) < ¢ < ftb).

There is én entirely different sort of constructivization of the

intermediate value theoren.

Theorem. Let £:[a,b] >R be cdntinuous, with f(a) € £(b). Then there

exists a sequence {cn} of real numbers, such that for every real number
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¢ with c # c for all n, and f(a) < ¢ < f(b), there exi;ts x in
[a;b] with f(x) = c.' (In other words, all ekcept countably many inter-
mediate values are assumed.)

425222, Let '{dn} be an enumeration of the numbers a + r(b-a),
where r runs over the rational numbers in [0,1]. Consider any real
number c¢ with ¢ # c, for all n, where e, = f(dn). By induction, we
construct a sequence '{[an,bn]} of proper closed intervals of [a,b],

l.n-1

with bn -a = 59 (b-a), and f(an) fc¢c= f(bn). Take a, = a

1
and b; =b. Since c # £(a,) for all n, and 352- is a member of the

sequence '{an}, we have c # f(égé-. Therefore c > f(ééha

c < f(i%ég. In the former case take a, = i) and b, = b. In the

2 2 2
latter case take a, = a and bz = E%E“ It is clear that the fequired -

conditions are satisfied. A continuation of the same process gives an
inductive construgtion of the sequence {[an,bn]}. The rest of the proof
is the same as the cdrresponding part of the prdof of the previous theoren.
The two verSions'of the intermediate value theorgm just given stand
at two eitremes. The first version has a stronger hypothesis than the
classical result, but the conclusion‘is the same. It is therefore called

an equal conclusion constructive substitute. The second version, on the

other hand, is an equal hypothesis constructive substitute.

Before going further, we shall systematically re-examine the language
of mathematics, to adapt it to the constructive point of view. The first
tﬁ do this seems to have been Brouwer, whom we follow here. He remarked
»that tﬁe meanings customarily assigned to the ﬁerms "and", ''or', "not",

“implies", "there exists", and "for all" are not entirely appropriate
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to the constructive point of view, and he introduced ﬁcre appropriate
meanings where necessary.

The connective "and" causes no trouble. To prove "A fand B, we
. mustrprove A and also prove B, as in classical mathematics. We have
already discussed the connective "or". To prove "A or B" we must
give a finite, purely routine method which after a finite number of steps
cither leads to a proof of A or to a proof of B. This is very
different from the classical use of "or'; for ekample the statement
"yt > 0 or H' < 0" is true classically, but we are not entitled to
assert it constructively. The classical meaning of "or'" is too vague to
be of constructive ﬁse. |

The connective "impiies" is defined classically by taking
"A implies B" to mean  'mot A or B''. This definition would not be
of much value constructively. Brouwer therefore defined "A impiies B"
to mean that there exists an argument which shows how:to convert an
arbitrary proof of A into a proof of B. Isn't this a more natural and
intuitive definition anyway? To take an eiample, it is cleér that
i{(A implies B) and (B implies <€)} implies (A implies Q" is
always true constructively; the argument that converts arbitrary proofs
of "A implies B" and "B implies C" intoa proof of "A implies C"
is the following: given any proof of A, convert it into a proof of C
by first converting it into a proofxof B and then converting that proof
into a proof of C.- |

We define 'mot AT té'mean that A 1is contradictory. By this we
mean that it is inconceivable that a pfoof of A will ever be given. For

example, "not "0 = 1" is a true statement. The statement "0 = 1" means
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that when the numbers "0" and "1" are eipiessed in decimal form, a
qechanicél comparison of the usual sort checks that they are the same.
Since they are already in decimal form, and the comparison in question
shows they are not the same, it'is impossible by correct methods to prove
that they are the same. Any such proof would be defective, either
technically or conceptually. As anothef example, "not (A and not A)"
is always a true statement, because if we prove not A it is impossible
to prove A--therefore, it is impossible to prove both.

Having changed the meaning of the connectives, we shguld not be
surprised to find that certain classically accep;ed modes of inferen;e
are no longer correé;. The most important of these is the principlg of
the excluded middle--"A .or not A". Constructively, this principle
would mean that we had a method which in finitely many, purely routine,
steps would lead to a proof or disproof of an arbitrary mathematiéal
assertiop A. Of course we have no such method, and nobody has the least
hope that we ever shall. It is the principle of the excluded middle--
even a very special case thereof--that accounts for almost all of the
important unconstructivities of classical mathematics. By this I mean
that if one were to tack the principle of the excluded middle (or even a
special case thereof, which I call the "limited principle of omniscience")
onto the principles of inference that are constructively correct, he would
have a system pbwerful enough to deduce almost all of the important results
of classical mathematics. Another incorrect principie is "(not not A)
implies A", 1In other words, a demonstration of the impossibility of the
im?ossibility of a certain construction, for instance, does not constitute

a method for carrying out that construction. This particular incorrect



principle can of courseAbe deduced from the eicluded middle.

I could proceed to list a more or less complete set of constructively'
valid rules of inference involving the comnectives just introduced. This
 would be superfluous. Now that their meanings have been established, the
rest is common sense. As an exercise, show that the statement

"A-+0-= ljfa;not A"
is constructively valid.

The classical concept of a set as a collection of objects from some
pre-existent universe is clearly inappropriate constructively. Constructive
mafhematics does not postulate a yre-eiistent universe, with objects lying
around waiting to be collected and grouped into sets, like shells on a
beach. The entities of constructlve mathematics are called into belng by
the constructing intelligence. From this point of view, the very question
mehat is a set" is suspect. Rather we should ask the question, "ﬁhat must

one do to construct a set?'. When the question is posed this way, the

answer is not hard to find.

Definition. To construct a set, one must specif& what must be done
to éonstruct an arbitréry.element of the set, and what must be done to
prove two arbitrary elements of the set are equal. Equality so defined
must be éhown to be an equivalence relatidn.

Notice that the sets we have constructed so far--the set of integers,
the set of rational numbers, the set of sequences of integers, the set of
real numbers, etc., all conform to the prescription just given. In the
~case of the real numbers we took pains to present the deflnltlon in

exactly the prescribed form, as the reader will see if he checks back!l
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A number of pecple have quarreled with tﬁis definition of a set as
being too vague. This is probably because they have been unduly influenced
by formalism. Our definition is no more or less vague than the classical -
definition of a set, as a collection of mathematical objects. If they find
that too vague, and want to define a set in the context of a formal axiomatic
system, then they have been unduly inflﬁenced by formglism.

While we are on the subject, we might as well define a function
f:A > B. It is a rule which to each element x of A associates an
element f(x) of B, equal elements of B being associated to equal
elements of A.

The notion of a subset AO of a set A 1is also of interest. To
construct an element of .AO, one must first construct an element of A,
and then prove that the element so constructed satisfies certain additional
conditions, characteristic of the particular subsgt Ao. Two eleﬁents of
A, are equal if they are equal as elements of A.

For example,'to construct an element of the set ' R® of positive
real numbers, we must construct a real number x and then prove that
there exist positive integers M and N with X, 2 %- whenever n 2 N.

Contrary to classical usage, the scope of the equality relation never
extends beyond a particular set. Thus it does not make sense to speak of
elements of different sets aé being equal, unless possibly those different
sets are both §ubsets of the same set. This is because for the constructivist
equality is a convention, whose scope is always a given set; all this is
conceptually quite distinct from the classical concept of equality as
“identity. You see now why the constructivist is not forced to resort to

the artifice of equivalence classes!
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After this long digression, consider again the qﬁantifiers. Let
A(k) "be a mathematical assertion depending on a parameter i ranging
over a set S. To prove "VxA(i)", we must give a method which to each
. element x of S asscciates a proof of A(k). Thus the meaning of the
universal quantifier "Y1 js essentially the same as it is classically.

We expect the existential quantifier "I', on th¢ other hand, to have
a new meaning. It is not clear to the constructivist what the classicist
means when he says ''there exists". Moreover, the existential quantifier
is'just a glorified version of "or", and we know that a reinterpretation
of this connective was necessary. Let the variable x range over the
set S. Then to prdVe i 3§A(k)" ﬁe must construct an element iO of
S, according to the prinéiples laid down in the definition of S, and
then prove the statement ."A(io)". We have already seen how this is :
sometimes impossihle to do, even when we have already proved classically
1 3&A(i)", for ekample in the intermediate value theorem.

Again, certain classical uses of the quantifiers fail constructively.
For eiample, it is not correct to say that 'mot ViA(i) implies
ai not A(i)". On the other hand, the implication ''mot ikA(k) implies
Vx not A(k)" is constructively valid. I hope all this accords with
your commen sense, as it does with mine.

We are now in a position to give constructive versions of such
abstract axiomafic systems as groups, topological spaces, manifolds, etc.
We shall restrict ourselves to some simple results from the theory of

metric spaces.

‘Definition. A metric space consists of a set E and a function
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p:ExB -+ R, such that
(@) p(x,y) 20 for all % and y
(b) Q(X:Y)

() o(x,¥)

O-++£‘= y

p(y.x)

@) p(x,2) = oY) + 0(y,2).

The usual classical examples of metric spaces are also metric spaces
in the constructive sense--the Euclidean spaces R®, the space C([a,bl)
of continuéus real-valued functiocns on a compact interval, and all subsets
thereof, to give three eiamples.

The only problem in proving the Baire category theorem const:uctively
is to state it correctly. Call a subset U of a metric space E open if
for every x in U thére eiists r >0 such that the open sphere S(r,x)
is a subset ' of U. Call a subset V of E deﬁse if to each x in E ]
and each r > 0 there exists a point y in V with p(x,y) < r; Call

-}

an intersection n U_ of dense, open subsets of E a residual subset
n=1 FE a1 v
of E. (The term is not appropriate constructively, but we conform to

classical usage.) The Baire category theorem goes as' follows.

' Theorem. A residual subset of a complete metric space E 1is dense in E.
‘Proof. Let S(ro,io) be any open sphere in E, and {Un} a
sequence of dense open sets. We must construct a point x of

S(ro,i ) a n U. To do this, we construct a sequence {S{r ,i }} of
o n=1 ©® n’’n

open spheres, such that

3 .
(a) ‘S(rn,xn) < Scf'rn—l’xn—l) n Un

® T, < R
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for all n 2 1. This is done inductively as ‘follows. Since U, is
dense, there exists a point X ¢ S(%-rn_l,kn_l) n Un' Since the inter-
section is open, there ekists I 0 such that (a) is satisfied.
Replacing T, by mih{rn,z-n}; we see that (a) remains satisfied and
(b) is satisfied as well. This completes the inductive construction.

By (2) and (b),

-n

1
o(x ’xn-l) < E-r 2.

n n-1
Therefore '{xn} is a Cauchy sequence. Since E 1is complete, it converges

to a limit x. By (aj, xn € S(%-rm,xm) whenever n > m. In other words, .

oy 311 enivd femse sad o sl
p(xn,xm) <5 Ty Therefore p(x,xm) S5 T Taking m = 0, we see that

X € S(ro,xo). Taking m =1 we see that x ¢ S(rm,xm) c Um' Thus
X € S(ro,xo) n 2

-Un. This completes the proof.
n=1 \

n Un is constructed

Notice that a particular point of S(ro,xo) n
n=1

by the above proof. This is because at each stage of the induction the
proof of the densi;y of Un selects a particular point X, and the proof
of the openness of S(%-rn_l,xn_l) n Un selects a péfticular value of T
This is a universal attribute of constructive existence proofs: such a
proof always constrﬁcts a specific element.

We now apply the category theﬁrem to show ;he uncountability of the
real numbers R. A set S ~is countable if there exists a sequence '{sh}
of elements of S, such that for each element s of § there exists a
posifive integer n with s = s_. The usual proofs show that the set of

integers Z, the set of rational numbers @, the products Z x Z and

Q x Q, for eiample, are countable. We wish to show that R 1is uncountable,
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but in a positive, useful sense, which turns out to be the following.

Definition. Let S be a set with an inequality relation #.
Assume that to each sequence 'Lsn} of elements of S there exists an
element s of S with s # Sh for each n. Them S is called
uncountable.

Using the Baire category theorem, we can prove éﬁe following‘

strengthened version of the uncountability of R.

Iﬁggzggf Let '{in} be a sequence of real numbers. Then the set
., U ='{i € Rix # x ~ for all n}
is residual.

Proof. We need only show that each Un ='{x:i # xn} is dense and
open. To show U is open, consider x in U. Set r= |x-x_|. Then
S(r,i) c Un. Thus Un is open. .To show Un is- dense, consider x in
R and r > 0. Then in > X or kn < X + %—r. In the first case, define
y = x. Then y € Un and livy[ <r. In the second';ase, define

y=Xx+ %-r. Then y ¢ U and |x-y| < r. Thus U is dense.

As a consequence, the irrational numbers are residual. This fact
can be used to give a constructive proof of the existence of irrational
numbers x and 'y such that <’ is rational (a2 classical proof was
given earlier). We assume some facts from the constructive théory of the
logarithmic and eiponential functions. The function £(u) = (lc:gzu)"1
takes the interval (0,1) onto the interval (-«,0). The inverse
/v

- function g(v) = 2 takes (-=,0) onto (0,1). The equality ¥ =2

means that vy 1og2x = 1, or that y = f(i). By the above theorem and the



29

Baire category theorem, there exists X in_.(O,l) such that x # T,

and x # g(tn) for all n, where {rn} is an enumeraticn of the rationai
numbers and '{tn} an enumeration of the non-zero rational Pumbers. Thus
both x and y = £(x) are irrational. Also, X = 2.

Another pretty application of category theory is to construct trans;
cendental numbers--in fact, to prove tﬁey are residuél. One way to do
this would be to show the algebraic numbers are countable, from which it
follows as above that the transcendental numbers--those unequal to every
algebraic number--are residual. Since the proof that the algebraic numbers
are countable is a bit messy, we take another point of view, defining a
real number i to be transcendental if p(i) # 0 for every polynomial
p with integral coeffiéients not all of which are zero. Let {pn} be
a listing of all such polynomials. It is easily seen that '{izpngx) # 0}
is open and dense for each n. The set of transcendental numbers, which
is the intersection of all these sets, is therefore residual.

The two most important concepts in the theory of metric spaces are
perhaps continuity and ccmpactness. Each presents some problems to the
constructivist, as Brouwer pointed out.

Since the prcblems presented by compactness are more easily resolved,
let's start there. The usual definition in terms of open coverings having
finite subcoverings won't do, because even the closed intervals don't seem'v
to be provab1y compact. The same objection holds for sequential compactness.
It is true, however, that the closed intervals are complete and totally
bounded. Following Brouwer, we therefore define compact to mean complete
aﬁd totally bounded. (To refresh your memories, a metric space X |is

totally bounded if for each e > 0 there exists a finite sequence
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Xys®o X, of points of X such that for each x in X one of the
numbers p(x,xi) is less than e. Such a finite seqﬁence is called an
e-approximation to X.)

A very useful and very trivial result of classicai mathematics is
that a closed subset of a compact spéce is compact. This is not true
constrﬁctively (where by closed subset we mean a subset that contains
all of its limit ?oints). For example, the subset S = {x e [0,1]:x = O,
or x =1 and the Riemann Hypothesis is true} of [0,1] can not be
asserted to be compact, although it is easily seen to be closed.

As an example of a non-routine constructivization of a classical
result, we shall develop some theorems which are useful in some circum-
stances for constructiné compact subsets of a compact metric space. Of
course, of the two conditions inﬁolved in compactness--completeness and
total boundedness--the latter is much more critical, because a to£ally
bounded space can always be completed to beccme compéct. As an example,
if x',--~,Xn are finitely many points of a compact space E, then the
closure of the set '{il,---,in} is a compact subset of E because it
is obviously totally bounded. The following result gives iess trivial

compact subsets.

Theorem. Let E be a compact metric space, and Xg @ point of E. Let
r be a positive real number. Then there exists a compact set S c E

such that

S(r,xo) c8Sc S(Sr,xo).

" 'Proof. We construct by induction sﬁbsets Sl,SZ,--- of E, each

consisting of a finite sequence of points, such that
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(a) for each x 1in S(r,xo) there exists y in §

with o(x,y) s 2™

n

() for each x in Sn+1 there exists y in Sn -

with p(x,y) < 23,

We begin the constructicn by taking S1 = {ﬁo}. Clearly (a) is satisfied.
Assume next that Sl,---,sn have been constructed safisfying the relevant
instances of (a) and (b). We shall show how to construct Sn+l' Let

X s°%,%y be a Z’nr-approximationfto E. Foreach i, 1 <i <N, we
define

p(fi’sn) = min{p(xi’yl): "':p(xi:}’k)}s

where Yystocsyy are the points of Sn' We can separate the points

: : ' ' -n+3 :
xl,"-fo into two groups such that p(xi,Sn) < 2 T fgr all »xi in
the first group and p(xi,sn) > 2'n+2r for all Xs in the second. Let
Sn+1 consist of all those Xy in the first group. Clearly (b) is

satisfied by Sn+1' To check (a), consider x 1in S(r,io). By the

inductive hypothesis, there exists y in Sn with p(x,y) < 2_n+1r.

We also have p(x,xi)'s 27%r for some i. Therefore-

-n+2
r'

p(xi’sn) < p(xi,y) < p(x,xi) + p(x,y) <2 It follows that X5 must

be in the first group. Thus ki belongs to Sn+1’ and

p(x,xi) g 270 = 2~ ()+l,

Thus (b) ié éatisfied.' Let S be fhe closure of v Sn' Clearly
. n=1
S(r,xo) c S by (a). Consider positive integers n <m, and a point y

in Sm' Then |
p(r,S,) < 2700 seeuy 7 @I, pondy

by (b). It follows that S is totally bounded. Since S 1is closed, it
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is compact. Taking n = 1, we also see that
ply,xy) = p(y,S;) < 8r.

Therefore p(y,xo) < 8r for all vy én- S. 1In other words:,
S c S(Sr,xo). This completes the proof.

Before deepening this last result, we need to introduce the concept
of continuity. Let f£:E » E1 be a function from a ébmpact metric space
E to a metric space E1° For reasons discussed above, we define

continuity of such a function f to mean uniform continuity. Our basic

tool for constructing compact subsets is the following.

Theorem. Let £:X +R be a continuous real-valued function on a compact
metric space X. Then there exists a sequence '{an} of real numbers,
such that if a. is any real number with a # a, for all n, then the

set X = {i € X:f(i)_s a} is compact.

Proof. Since Xa +is clearly closed, we must.only show it is totally
bounded. Consider any positive integer n. Let il,f--,xN be a
n
%g-n'l-approximation to X. By the previous theorem, for 1 < j < Nn

there exists a ccmpact set th such that -

1

St%g-n-l,xj) c Xjn c.S(%-n’_,xj).

Thus the compact sets xjn’ for. 1.€ 3 £ Nn, cover X, and p(x,y) < n"1
for all x and Yy in Xjn' Choose such sets for each positive integer
n. For each j and n, with 1 < j < Nn’ we write

J
all j and n. We shall show that xa is totally bounded, thereby

G = g.l.b.{f(i):i € Xjn}' Let a be any real number with a # cjn for

proving the theorem. Let n be any positive integer. For each j,



1<3j<n, either ¢, <a or c, >a. Foreach j with c._ <2,

jn jn jn © ,
choose a point xj in Xjn with f(xj) < a. Then these points xj are
a n = -approximation to X,. To see this, consider x in X, . Then
X e Xop for some j. Hence c}ﬁ s £(x) < a. It follows that an X,

was chosen for this value of j. Also, p(x,xj) < n-1 since both x and
X; belong to xjn' Thus the ;j are 2 n'l-approximation to X . Hence

Xa is totally bounded.

A useful application is to the function f on X defined by
£(x) = plx,x4)

for some fixed *0 in A. The sets Xa are then the closed balls about

&

ko. By the theorem, all‘except countably many are compact. Using this
result, cne could construct partitions of unity.

We shall close these lectures with séme general philosophical remarks.
It may be necessary to dispel the impression that constructive mathematics
is only interested in those numbers'that somehow have to do with Goldbach's
conjecture. Exactly the opposite. The only interest pf such numbers is
to use them to show that certain thecrems of classicai mathematics are not
conétructive. They play no more part in the positive development of
constructive mathematics than they do in classical mathematics. A more
precise éritique of classical mathematics would not employ them at all,
as we shall now demonstrate. By the "limited principle of ommiscience",
I mean the statement that every sequence of integers either vanishes
idenﬁically or has a non-zero term. If this principle (LPO for short)
were valid construcfively, we would be able to constructivize most

classical results with little trouble. In other wordé, LPO accounts for
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a very large proportion of the unconstructivities of classical mathematics.
There seems to bé almost no haope of ever proving LPO constructively. It
would provide finite routines for either proving or disproving Goldbach's .
conjecture, the Riemann hypothesis, Fermat's last theorem, because each

of these unsolved problems is equivalent to the identical vanishing of a
certain constructively defined sequence of integers.‘

Thus if we can show constructively that YA~ imélies LPO", for a
certain mathematical statement 'A, we not only know that A has not yet
bgen proved constructively, but alsoc that A is extremely difficult,
most probably impossible, to prove constructively. The statement A that
"x =0 or x #0 for every real number x" is an examplé. To show that
A -+ LPO, let '{Xn} be any sequence of integers. Define o U 1if

®

x,=0 and y =1 if x #0. Then y = i y, 1is a real number.

: n=1 )
The statement A implies that y = 0, which means Vg = 0 for all n,
or that y # 0, ﬁhich means that Py #0 for some n. Thus A - LPO.
Therefore this particular statement A will most probably never be proved
constructively. Other statements that imply LPO are the statement that
every bounded monotone sequence of real numbers converges, and the state-
ment that every real number is either rational or irrational.

A slight modification of LPO, called LLPO'of the "lesser limited
principle of cmmiscience', is also useful for pointing cut unconstructi-
vities. LLPO étates that "for every sequence of integers either the first
-non-zero term, if one exists, is positive, or else the first non-zero
temm, if one.eiists, is negative'. It is easy to show that LPO -» LLPO,

“but the converse does not seem to be possible to prove. Nevertheless,
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LLPO is almost equally as 1mp1au51ble as LPO. Since the intermediate
value hecrem and the dichotomy "every real number is either 20 or
<0" each implies LLPO, it is very improbable either of these statements
will ever be proved (constructively). i

Many people feel theﬁ constructiﬁe mathematics does not go far enough.
According to them, it should concern itself with compytations that can be
carried out in fact, not merely in principle. There is no objection
whatever that I can see to doing this. Since the basic constructivist
philosophy is to bring out all possible shades of meaning, the constructivist
ph110$0phy demands that the distinction between computable in pr1nc1p1e and
computable in fact (or practice) be made wherever possible. Since there is
no sharp division between computatlons that can be performed in practice
and those that cannot, what we really are asking for is some measure of '
the complexity, or difficulty of a computation. If some such meaeure can
be obtained systematically, we should certainly buildﬂit into our mathe-
matics. Until then, we will have to continue to treat such questions by
ad hoc methods.

The distinction between computable in principle and not necessarily
computable at all, on the other hand, is susceptible to systematic treat-
ment, but not within the framework of classical mathematics. To treat
this very important matter--of ‘what is computable in principle--
systematlcally; we must set up a new framework. This is the constructive
framework, developed above.

The classicalrmathematician ﬁight object, that the constructive
framework is also deficient: whereas the classical viewpoint inhibits

the development of constructive meaning, the constructive viewpoint
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inhibits the development of classical meaning. This is untrue. Almost

all classical theorems use only the principle of the éxcluded middle

(E.M.) and, less frequently, the axiom of choice (A.C.) in addition to
constructively correct principles in their proofs. These classical

theorems can therefore be realized from the constructive viewpoint as
implications, of the form " (E.M. and A.C.) -+ A", whege A is the classical
result. In most cases, we even have "LPO + A", Moreo#er this constructive
realization does not do violence to the meaning, in my opinion. Thus
classical mathematics can be regarded as a branch of constructive mathematics,
whereas to regard constructive mathematics as a branch of classical mathe-
matics is not possible. If the classical mathematicians would takelthis
point of view, and write their theorems constructively as implications,

say of the form "E.M. - A", rather than refusing to recognize the distinction
between “A" and "E.M. - A", a significant advance in meaning would be
achieved. They might even come to believe, as many éonstructivists do,

that although theorems of the form "E.M. - A" are interesting, the real

task of mathematics is to prove results not having that surplus baggage

on the left.
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